College of ChemistryDepartment of ChemistryDept of Chemical and Biomolecular Engineeringbg image
slogan
visual image

Chemistry Faculty

Paul Alivisatos

A. Paul Alivisatos

Samsung Distinguished Professor in Nanoscience and Nanotechnology Research

Professor of Chemistry

email: alivis@berkeley.edu
office: D43 Hildebrand
office phone: 510.643.7371
office fax: 510.642.6911
lab: D86-D79 Hildebrand
lab phone: 510.642.2148, 643.4078
student/post doc office: D81 and D45 Hildebrand

Research Group URL
Recent Publications

(photo by LBL photographer Roy Kaltschmidt)

Research Interests

Prof. Alivisatos' research concerns the structural, thermodynamic, optical, and electrical properties of colloidal inorganic nanocrystals. He investigates the fundamental physical and chemical properties of nanocrystals and also works to develop practical applications of these new materials in biomedicine and renewable energy.

Nanocrystals: Building Blocks for Solid State Chemistry and Materials Design

Nanometer size inorganic crystals are playing an increasingly important role in solid state physics, chemistry, materials science, and even biology. Many fundamental properties of a crystal (e.g., ionization potential, melting point, band gap, saturation magnetization) depend upon the solid being periodic over a particular length scale, typically in the nm regime. By precisely controlling the size and surface of a nanocrystal, its properties can be tuned. Using techniques of molecular assembly, new nanocrystal based materials can in turn be created.

Scaling Laws

As the number of atoms in a cluster increases, there is a critical size above which one particular bonding geometry; characteristic of an extended solid "locks in." As more atoms are added, the total volume and the number of surface atoms change, but the basic nature of the chemical bonds in the cluster does not. In this regime, the properties of nanocrystals vary smoothly, slowly extrapolating to bulk values, according to scaling laws. Many scaling laws have been hypothesized, a few are verified. For instance, the band gap of a semiconductor, such as Si, InAs, or CdSe, all increase with size, roughly as 1/r2, and their melting temperatures all decrease with size, roughly as 1/r, and these observations can be described well theoretically. Other size dependent scaling laws are topics of current research: How long does it take for a crystal to isomerize between two stable bonding geometries? How do the selection rules for absorption and emission of light depend upon the crystal size (translational symmetry)? What is the largest crystal that can be made defect free? In our fundamental studies of nanocrystal physics, we employ a wide range of spectroscopic and structural experimental tools, as well as computer simulation.

Synthesis

The ability to make nanocrystals of high quality (uniform size, no defects except the ones we want, designed surface, etc.) is key to this area of science, and also interesting in its own right. We grow nanocrystals by injecting organometallic precursors into pure, hot surfactants. Some important questions of solid state chemistry can be addressed in the synthesis of nanocrystals. How does nucleation of a solid occur? What governs the rate of growth of a crystal? What is the stress and strain at the interface between a core and a shell of different materials? In addition to fundamental studies of nanocrystal synthesis, we are interested in developing automated, self-correcting nanocrystal syntheses, surface derivitization, and methods for nanocrystal characterization and assembly.

Materials Design Targets

Biosketch

Dr. Paul Alivisatos is Director of the Lawrence Berkeley National Laboratory (Berkeley Lab) and is the University of California (UC) Berkeley’s Samsung Distinguished Professor of Nanoscience and Nanotechnology.  He also directs the Kavli Energy Nanosciences Institute (ENSI), and holds professorships in UC Berkeley’s departments of materials science and chemistry.  In addition, he is a founder of two prominent nanotechnology companies, Nanosys and Quantum Dot Corp, now a part of Life Tech.

Groundbreaking contributions to the fundamental physical chemistry of nanocrystals are the hallmarks of Dr. Alivisatos’s distinguished career.  His research breakthroughs include the synthesis of size- and shape-controlled nanoscrystals, and forefront studies of nanocrystal properties, including optical, electrical, structural and thermodynamic.  In his research, he has demonstrated key applications of nanocrystals in biological imaging and renewable energy.  He played a critical role in the establishment of the Molecular Foundry, a U.S. Department of Energy’s Nanoscale Science Research Center; and was the facility’s founding director.  He is the founding editor of Nano Letters, a leading scientific publication in nanoscience.
 
Dr. Alivisatos has been recognized for his accomplishments, with awards such as the Wolf Prize in Chemistry, the Linus Pauling Medal, the Ernest Orlando Lawrence Award, the Eni Italgas Prize for Energy and Environment, the Rank Prize for Optoelectronics, the Wilson Prize, the Coblentz Award for Advances in Molecular Spectroscopy, the American Chemical Society Award for Colloid and Surface Science, the Von Hippel Award of the Materials Research Society, and most recently, the 2014 ACS Materials Chemistry Award. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

Dr. Alivisatos received a Bachelor's degree in Chemistry in 1981 from the University of Chicago and Ph.D. in Chemistry from UC Berkeley in 1986.  He began his career with UC Berkeley in 1988 and with Berkeley Lab in 1991.

[top of page]